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Periodic forcing of spiral waves in excitable media
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An analysis of periodically forced spiral waves in excitable media provides a simple explanation of the
resonant drift dynamics and frequency entrainments observed both in laboratory experiments and in simula-
tions of partial-differential equations. Forcing of both rigidly rotating and meandering spirals is considered. In
the meandering case we predict the existence of different resonant drift states that could be detected in
experiments[S1063-651X96)10411-9

PACS numbe(s): 82.40.Ck

I. INTRODUCTION II. MODEL EQUATIONS

Th f spiral . itabl dia to h Our starting point is a system of ordinary differential
€ response o spiral waves In excitable media 1o Omoéquations(ODEs describing the dynamics of periodic and

geneous periodic forcing is of interest for a variety of rea"meandering spiral waves in homogeneous, unbounded excit-
sons. First, as Figs.(8 and Xb) illustrate, a drift in the able medig12—14;

location of a rotating spiral wave can be produced by peri-

odically varying a system parameter at the spiral rotation bzséqs'

frequency. This has been recognized as a possible means of

low-voltage cardiac defibrillationl1—6]; the idea is essen- b=w,

tially that with relatively weak periodic forcing one can in- _ (1)
duce rotating waves within a fibrillating heart to drift to a s=sf(s?,w?),

boundary(heart's surfacewhere they can no longer be sus-

tained. A second reason for interest in this problem is that w=wg(s% w?),

spiral waves occur in a variety of biological systems and

these are often subjected to some form of external forcingVherep is complex andp, s, andw are real withs=0. As
as, for example, might occur due to daily variations in sun-h€ notation suggests, is thought of as the position of the
light, and it is important to understand the role such externafPiral tip and we writgp=x+iy. Thens is the linear speed
driving can play in these systems. Finally, as shown in Figs(scalaif anq w is the mstantaneous. rotational frequency of
1(c) and Xd), when “meandering” waves in excitable media the Spiral tip. The real-valued functiofisandg are

are periodically forced, they can exhibit complex motions, f(82,02) = — Ud+ a 82+ (ap 1 y2) 02—
and it is desirable to have a simple mathematical description ’ 0 '
of these motions. 9(s?,w?)=5>—w?ly3—1. 2

Our approach shall be to consider the periodic forcing of
spiral waves from a dynamical-systems view point and to
show that much of the spiral behavior can be deduced simpl
from the interaction of dynamics with system symmetries.
We base our analysis on a system of ordinary differential

Equations(1) and(2) have been derived from a symmet-

jc bifurcation analysis of spiral dynami¢$2-14, but here
slightly different form is usefiL5]. They are essentially the
implest system of ODEs that have the relevant symmetries
or two-dimensional excitable medimamely, rotations, re-
nections, and translationsnd have a supercritical Hopf bi-
urcation from rotating-wave solutions. Thus these equations
can be thought of as a kind of normal form for spiral dynam-

to model well the dynamics of spiral waves, though it has not
been obtained by rigorous reduction of a partial-differential

eql\ﬁt'onh":logel of ixcztallale_ r?edlat. din the forci ¢ ics. While the equations have been obtained from an analysis
d € shail E: particutarly It?] ereste 'R ethorcmfg 0 :jne- of the transition from periodic to meandering spiral dynam-
andering spiral waves, 1.€., the case where Ine uniorced Sygsg they have been shown to describe qualitatively a wide

: . . ; ! aFange of behavior observed in homogeneous excitable media
received much attention recently in experiments and S|mulaf14 16-18

tions[5,7—-10, but it has not been given a proper theoretical ; ;
footing. We show that many drifting states are possible in the Consider thes-w subsystem described by
meandering case and we predict some not previously seen in s=sf(%0d), w= 0g(s2,0?). &)
experiment.

We stress that while our focus is the periodic forcing oflt can be seen that the subsystem decouples in @gsnd
spiral waves in excitable media, our approach is general anthat ¢(t) andp(t)=x(t) +iy(t) can be found by quadrature
hence our results on homogeneous, periodic forcing are fullpnces(t) and w(t) are known. Thus the dynamics of rotat-
applicable to any system exhibiting rotating waves in theing and meandering spiral waves in homogeneous excitable
presence of distance-preserving symmetries of the plane. media can be reduced to a simple two-variable ODE system
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FIG. 1. lllustration of the effects of periodic forcing on the spiral-wave dynani@$eriodically rotating solution in a reaction-diffusion
model of homogeneous excitable meftld]. The gray scale shows values of the slow species and the white curve shows the path of the
spiral tip. The model parameters ae 0.8,b=0.05, ande=0.02.(b) Same conditions a&), except with spatially homogeneous forcing
at the rotation frequency of the unforced spiral. The induced drift in the spiral location is from top to bottom in this case. Here
b=0.05+0.0035 sin(1.7434. (c) Quasiperiodic state from the ordinary differential equation model described in the text. The state corre-
sponds to a “meandering” spiral wave. The parametersagre 10/3, a,= — 7.5, andy,= 3.8. (d) Effect of periodically forcing this wave:
ar,=—7.5+0.6 sin(0.3229).

(3) together with a two quadratures. We shall refer to thecause this has been considered in experiments and simula-

system described by Egé3) as the reduced &-w system tions and also because scaling behavior for solutions can be

and Egs(1) as the full system. obtained in the limit of weak forcing. Hence, in the follow-
To investigate the effect of parametric periodic forcing oning we shall frequently seA=e.

spiral waves, we let one of the model parameters vary sinu- There is presently no established mapping between pa-

soidally with time. Specifically we let rameters in the ODE model and those of any excitable me-
dium (experimental system or reaction-diffusion mgdahd
ay(t)= a3+ Asin(w;t), (4)  hence we cannot establish a direct connection between the

forcing of an excitable mediurthrough light variations, for
whereA andw; are the amplitude and frequency of the forc- example and the forcing we choose in E¢4). There has
ing. The period of the forcing shall be denotetk been recent work in this directiofl9-21. Our concern,
=2/ ws . Our approach does not require the specific case dfiowever, is to understand tlgeenericresponse of waves to
sinusoidal forcing, but for our numerical work we shall re- periodic forcing, i.e., we care about features that are inde-
strict our attention to this particular case. We shall frequentlypendent of specific details of the medium and the forcing,
be interested in the response to small amplitude forcing beand for this no rigorous connection is necessary between the
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ODEs and extended excitable media. Models of real excit-
able systems such as the Belousov-Zhabotinsky rea@@jn
are only approximate in any event and therefore it is reasonAs we shall show, the Fourier spectras{t) and@(t) are
able to focus on generic properties that are common to ankey to determining the response of rotating waves to periodic
forced system with the symmetries of two-dimensional ex-forcing. Note that the mean valuess(t) and@(t) are zero
citable media (rotations, reflections, and translations by definition, hence&,= &,=0; however,;s, and w,, which
whether they are spiral waves in excitable media or not. are the mean values of and w, are modified by terms
O(€?) ase—0.

To find p(t) for the periodically forced system, first we

! , L integrate the equation
We first consider forcing in the case where the unforced

dynamics are rotating waves, i.e., rigidly rotating spirals.

This situation is rather well understood from the work of

Davydovet al.[2,23], who use a kinematic approach to spi- to obtain

ral dynamics. We consider this here because it provides a

simple case for which we can illustrate our approach. d(1)= o+ w1t +Q(1),
Rotating-wave solutions to the unforced full system Eqgs. ) i

(1) are obtained when the reduced system Egshas non- WhereQ(t) is defined by

zero steady-state solutions, i.e., there are nonzero values jt

§0,&)0=0.

lll. FORCING OF PERIODIC WAVES

$=o0(t)=w;+o(t)

andw; for whichf(s?,w3)=g(s?,w?)=0. To see that these Q)=
are rotating waves for the full system, one integratesdhe
equation to obtainp(t) = w 1t + ¢g, where ¢o= ¢(0). Sub-
stituting this into the equation fqu gives

B(tHdt'.
0

The function()(t) is periodic with periodT; becauséo has

zero mean and period; . Substitution into theb equation

p=s,e(@1ttdo) gies

5
L . p(t)=s(t)e'?V=[s,+5(t)]e' Vel (@1t ¢0);
which in turn integrates to P(t)=s(t) [s1#5(1)]
s by definingH (t)=s(t)e'*®—s,, this can be written
_ 1 Li(wgt+ o) — i(01t+ ¢+ 871)
p(t)=po+ iwle PotRse ; p(t)=s,€e (@1t %0 4 H(t)gl(@at+ o), 6)
where po is a constant of integrationR;=|s;/w,|, and The scaling ofH(t) is readily found by substitution of
6= m/2 depending on the sign @é;. Thus we see that s(t) and@(t) into the definition ofH. The result is thaH is
p traces out a circle of radiuR, with frequencyw,. This  a periodic function with period;, which when expanded as
rotating-wave solution is stable in the full system so long asa Fourier series
the steady states(,w) is stable in thes-w subsystem.

We consider now the effect that periodic forcing has on a - _
H(t)= X heelert

stable rotating wave. For this, we need solutions to the re- = ()
duced system Eq93) when «, is given by Eq.(4). We
know that at least for small forcing amplitudes, the solutionnas coefficients that scale as
in the reduced system will be periodic and can be written in
the form Ih=0(e"), k#0
s(t)=s1+5(1), |hol=0(€?). ®

Note that the functioM (t) is complex.

From Eqgs.(6)—(8) it follows thatb has the form of the
unforced expression Eq5) plus a perturbation that is

o(t)=w;to(t),

wheres; and w, are the mean values sfand w, and’s(t)

and w(t) are periodic with periodl;. For weak forcing,
A=¢,s andw are O(€). While it is possible to obtain ex-
pressions fois and @ perturbatively in powers ot, these

O(e). This is because tH&| =1 terms dominate seri¢g) as
e—0 and this term isO(e). Rewriting Eg.(6) using the
Fourier expansion foH(t), we have

expressions are complicated and not important in detail. It is

sufficient to note that when expressed in the form of Fourier

series

S(t= 2 skt )= X aeker,
k= —o k=—o

the scaling of coefficients witla is

8.l =0(X), k=0,

o

b(t):slei(w1t+¢o)+ 2 hkei[(w1+kwf)t+¢o].

k= —o0

(C)

A. Nonresonant case

There are two cases to consider. The first is the non-

resonant case defined by the condition thatt kw70 for
all k or, equivalently, that the forcing period; is not a
multiple of the natural period’;=2m/w,. This is the ge-
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r (C) (d) FIG. 3. Effect of periodic forcing in the vicinity of a 1-1 reso-
w b - @ . ' i nancew;— w;=0. The pathp(t) is plotted for four values of the
W "ty 1y forcing frequencyw; with forcing amplitudeA=1.0. The corre-
I 1 sponding secondary radf, are shown, except at the point of reso-
i | nancew;= w;=2.714, where it is infinite. In the vicinity of the
00 é 00 . : 3' resonanceR,~ 1/|A|, where A= w,;—w;. The parameter values
S X are a,=10/3, y,=3.732, anda,= — 3.5+ Asin(2rw;t).

quencyw; such thatw; +k’ ws becomes small for sonie'.
FIG. 2. lllustration of the generiC case of perIOdIC forcing of a The Coeff|c|ent of the term in Eq(lo) Wlth frequency

rotating wave. Without periodic forcing, there(® a stable steady A=w;+k' o; dominates the series. In such a case we get
state in the reduced system afi a rotating wave in the full

system shown by a plot gf(t) in the complex plane. The rotation p(t)=po+ Rle”“’l"’ $ot 1) ¢ Rzei(At+ bot )

frequencyw, is given by the steady-state valuef In the case of

forcing, (c) the reduced system has limit cycle atd) the full WhereR25|hk,/A| and s,=arg(h,, /iA). The pathp(t) is
system has a quasiperiodic solution: a modulated rotating waveapproximately the superposition of two circular motions hav-
The two frequencies in this case ase, the forcing frequency, and  jng radii R; andR, and frequencies; andA, respectively.

@, the mean value ob in the reduced system. As can be seen,|f ,, /A >0, the two frequencies are of the same sign and the
w, is shifted from the unforced value. The pargmeter values a%esulting path has the form of a flower with inward facing
@1 =10/3, a,=—35, and y,=3.732, with forcing a,=—3.5  petals. Otherwise the frequencies are of opposite sign and the
+sin(2m t/2.4) in the lower figures. resulting flower has outward facing petals; see Fig. 3. As
—0, the radiusR, diverges and we get to the case of

neric situation. Then because the Fourier series is un'form|¥requency resonance

convergent we can integrat@) term by term to findp(t):

p(t)=po+ Ry (“1tF ¢t B. Resonant case
w The resonant case is defined by the condition that
+ . hi gl (01 kop)t+ o] (10) w;+k' w=0 for somek’. The series in Eq(9) then has a
K=o (w1 +Koy) ' secular termh, e'%0, so integrating Eq(9) gives

where p,, R;, and §; have the same meanings as in the p(t)=po+ R e'(“1tT %03 4 (h,,e'%o)t
unforced case.

The pathp(t) described by Eq(10) is of the form of a + > h el (@1 +kopt+ dol
circle given by the unforced solution plus a doubly periodic 2k w1t Kor)
solution with frequenciesv; and w;. For any fixed, non-
resonant forcing frequency, the perturbation of the circular =po+ct+ Rlei(*k’wft+¢o+51>
solution goes to zero linearly with the amplitude of forcing.
This is because thé| =1 terms dominate the Fourier expan- . hy il (k=K oyt + o]
sion (10) and this terms goes to zero linearly with forcing zr K=K oy '
amplitude.

The solution given by Eq(10) is known as amodulated wherec=h,.e'%o.
rotating wave[24]. There is an appropriately rotating frame  Thus, at resonance, in addition to the periodic part of
of reference in which the solution is seen as periodic. Suclp(t), the expansion contains a term that is lineat.iimhe
a reference frame is given by the transformatipn  “drift” in position implied by this term is known as resonant
=(p—po)e '“1. In this frame the dynamics are periodic drift. It has been known for almost a decadg?] and has
with frequencyw;. Generically the frequencies; and w; now been observed in a number of different systems
will be incommensurate and the dynamics described by7-10,285.
p(t) will be quasiperiodic. Figure 2 illustrates generic peri- In the resonance case, there is a linearly translating frame
odic forcing of a rotating-wave solution. of referencep’ = p—ct, within which the state is periodic. In
The behavior near a frequency resonance may be seen blynamical systems terminology such a solution is called a
fixing the forcing amplitude and varying the forcing fre- modulated traveling waveThe drift speed is given by
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IV. FORCING OF MODULATED ROTATING WAVES

7.5 1 0.1 ¢
- o ] B E 1 (a) We now consider application of periodic forcing to the
1 . ’ ] case where the unforced dynamics are modulated rotating
o w0 waves. These waves are quasiperiodic states that correspond
k ' to meandering spiral dynami¢44,26|.
A modulated rotating wave in the unforced full system
Eqg. (1) is obtained when the reduced system E).has a
periodic orbit(s(t),w(t)), wheres and w are periodic with

w5 [ 1 hy b 1 period denoted ,. These periodic orbits arise from a super-
w ] Kos E 3 (b) critical Hopf bifurcation of steady-state solutions in the re-
©—= Y f 1 duced system. The modulated rotating waves in the full sys-
ol ] ok | ] tem are then composed of two frequencigsand w,, where
0 2 -6 w; O

f w4 is the mean value ob andw,=2#/T, is the frequency

of the orbit in the reduced system. Near a Hopf bifurcation

w4 Will be close to the steady value @f and w, will be

close to the imaginary part of the bifurcating eigenvalues.

The pathp(t) exhibits typical behavior for meandering spiral

1 waves in excitable medidl4,16—-1§.

1 (e) The modulated rotating waves corresponding to spiral

] meandering have exactly the same mathematical character as

0 the modulated rotating waves described in Sec. Ill. In fact,
the difference between the two cases is simply the origin of
the secondary frequency. For classical two-frequency mean-
dering waves, the secondary frequengyarises via a Hopf

FIG. 4. Phase portraits, Fourier spectra, and pptfs different bifurcation, whereas in the forced rotating-wave case, the

resonances(@ Small amplitude forcingA=0.2 andT,=1.9875.  Second frequency comes from forcing and is thus simply the
Forcing creates a nearly elliptical orbit around the fixed point of theforcing frequencyw; . In both cases the primary frequency
unforced reduced system and only the primary peak in the Fouriew; has the same meaning.
spectrum has significant size. In this case only the primary reso-
nancew,= w; produces detectable resonant drift. The parameters
are a;=10/3, a,=—3.5, and y,=3.732. (b) Higher amplitude
forcing: A=1.2, T;=2.546 85, and other parameters agah The We approach the study of periodically driven meandering
mean valuew; of the periodic orbit has changed as a result of waves by first considering periodic forcing of the periodic
forcing and the forcing frequency is adjusted such that ;. The  orbit in the reduced system and then by considering the dy-
primary peak is much largénote the change of scale betwe@h  namics that follows in the full systems. Figure 5 shows a
and (b)] and the higher-order peaks in the Fourier spectrum argophase diagram for the dynamics of the reduced system as a
visible. (c) A 2:1 resonance with the parametgy changed so that  function of the two forcing parameters: forcing peribdand
w1=2w¢. The parameters are as (), excepty,=7.363. All  forcing amplitudeA. Pathsp(t) in the full system and phase
paths shown are over the same time interval. portraits 6, ) in the reduced system are shown in Fig. 6 for
labeled points in the phase diagram. The parameters in the
ODE model are chosen such that the unforced system has a
five-petal meander pattern. This can be seen in Fig). 6
angle of the drift is determined by the coefficignt and the W.'th h|gh-frequencz f%rcmg' the system behaves as '.f the
driven parametetr,= a;+ Asin(wst) were constant with its

integration constani,. . 0
In Fig. 4 we show three cases of resonant forcing. For théIme average valuer,. Hence the patfp ands-w phase

small amplitude forcing in Fig. @), the only resonance pro- portrait at point(a) are indistinguishable from those of the
. b 'gIn 9. @, y P unforced system. We shall defer consideration of the paths
ducing detectable drift is the primary resonanse= wy,

t) until Sec. IV B.
ie. k'——1. Even this drift is quite slow. The higher- P(t) untl Sec

, , ) The phase diagram in Fig. 5 is typical for a forced non-
harmonic peaks in the Fourier spectrumrbfare very small  jineqr oscillator; see, e.g:27—30. There are regions of fre-

and so drifts associated with higher-order resonances are igyency locking (Arnol'd tongues within which the fre-
significant. With the larger amplitude forcing in Fig(b%,  quency w, is rationally related to the driving frequency
the primary peakh_, is larger and so the drift speed at 1:1 ,.  These are the:q entrainments wher&; /T,=p/q. We
resonance is larger. Moreover, due to nonlinearity, the orbighow only a few of the low-order entrained regions. The
in the reduced system is no longer nearly elliptical and henc@:q tongues open frorh=0 asA'P, so except for the Iy
higher-harmonic peaks have sufficient amplitude. Thusongues, all tongues are cuspsfat 0.

higher-order resonances can provide noticeable drift as is Phase portraits in Figs.(5)—6(d) show the dynamics of
illustrated in Fig. 4c). Note that in Fig. 4 and throughout this the reduced system in passing through the 1:1 tongue. The
paper we plot the magnitude of Fourier coefficients on aorbit in thes-w system adjusts so that the frequenay is
linear scale. equal to the forcing frequencw; throughout this band.

A. Reduced system: A forced oscillator

|c|=|hy|, which scales according td¥'| ase—0. The pe-
riod in the linearly translating frame i§;=|k’|T; and the
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wheres,; and w, are the mean values sfand w, ands(t)

f andw(t) are doubly periodic with periods, andT;. These
two periods will be commensurate or not depending on
whether the system is entrained or not. However, for the
present we shall not distinguish between the two situations.
Unlike in the case of rotating waves,and @ do not go to
zero as the forcing amplitude goes to zero, because there is a
(finite-amplitude periodic orbit in the unforced system.
Hences and® cannot be treated as small quantities.

To find p(t), we first integrate thep equation to obtain

d(1)= dot w1t + (1),

where ) (t) is again is defined by

0.6 FT T

04—

0.2 -

k
\
1

0 0.5 1 15
T, / T3

Q(t)EJ:'J)(t’)dt’.

The function{) is doubly periodic with period3, andT;.
_ ) Substitution into thep equation gives

FIG. 5. Phase diagram for the ODE model as a function of
forc_ing_periode and forcing_ amplitl_JdeA. Tg is the secondary _ b(t):S(t)ei¢(t):[sl+’§(t)]eiﬂ(t)ei(wlt+¢0)
period in the absence of forcing. Solid curves show the boundaries
of some of the low-order entrainment tongues. Short-dashed curves
are loci of period-doubling bifurcations for the 1:2 and 1:1 locked

states. The period doubling in the 2:1 tongue is outside the range %here in the last equality we have define@(t)
the figure. Long-dashed curves are loci of the two strongest reso- i) . 4 y . 4
=s(t)e'"*Y—s,;. This doubly periodic, complex function

nant drift states within the parameter range of the figure. Letters N -
label points shown in Fig. 6 and elsewhere. The parameter valuddlays the same role that the periodic functid(t) played in

are a;=10/3, a9= — 7.5, andy,=3.732. Sec. Il Herg, howeverQ(t) is notO(e).. . .
The functionQ(t) can be expanded in a Fourier series as

:Slei(w1t+¢0)+ (g(t)ei(wlt+ ¢’0)'

Phase portraite) shows the orbit in the 2:1 tongue where o
Tf /T2:2. t)= ei(mwf+na)2)t 11
Separating regions of entrainment are curfreg shown QM) m,nz’w Gm.n ' 1

on which the two periods are irrationally related and the
dynamics is quasiperiodic. Cagg) is effectively a quasi- Thus we have
periodic example, that is, it does not lie in any low-order
entrainment region and is a good approximation to a trajec- (o T Con 4 Meoe 4 Moo
tory on the underlying invariant torus for the reduced system. p(t)=s,€'t lt+¢°)+m nz_w Gl L1 MO N2 o],

For sufficiently large forcing amplitudes the underlying ' (12)
invariant torus breaks up. This is signaled by the overlap of
Arnol'd tongues and by period-doubling bifurcations of the  One may now integrate this equation to obtaift). As
entrained statef27,31]. Once the torus has broken, one canwe shall see, there are four distinct dynamical states depend-
expect chaotic states to exist as well. Poifitsand(h) illus-  ing on whether or not the frequencies and ; are locked
trate the dynamics beyond the breakup of the torus. As witland depending on whether or not there is a frequency reso-
the quasiperiodic state, we do not know whether or not thesgance. Frequency locking is determined solely by the dy-
are strictly chaotic, but they are good representations of theamics of the reduced system. Resonance occurs if there is a
complex dynamics found at sufficiently large forcing ampli- sacylar term in the expansion fbrin Eq. (12), i.e., if there

tudes. existm’,n’ such thatw;+m’ w+n’ w,=0. This is just the
generalization of the resonance condition found for the forc-
B. Full system: Tip paths ing of rotating waves considered in Sec. lll. We address
We now consider the form of solutions in the full system.separately the cases whetg and ¢ are and are not fre-
We consider in detail only the cases where the dynamics diuency locked and we discuss the issue of resonance for each
the reduced system is periodientrained or quasiperiodic. ~case. We then consider the parameter dependence and scal-
We give a brief treatment of the chaotic case in Sec. IV C.ing of solutions.
For either entrained or quasiperiodic states, the solution in
the reduced system can be written in the form 1. Locked frequencies

Within an Arnol'd tongue the frequencies, and w; are
rationally related, so that there exists a frequengysuch
that w,=pwy andws=qwy. Thus the Fourier series can be
o(t)=w,+o(t), rewritten as a sum over frequencies:

[

s(t)=s;+5(t),
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FIG. 6. Pathsp for the full system and phase portraits in the reduced system at points corresponding to those labeled in Fig.
(a) High-frequency forcing. Here the dynamics are indistinguishable from that of the undriven syste(d) States within the 1:1 tongue.
(e) State within the 2:1 tonguéf) and(h) Chaotic orbits(g) Quasiperiodic orbit near the 1:1 tongue. The horizontal bars show unit length
in the p plane.

* pathp is a function of bothw,; and wy. When the frequen-
p(t)=sel@tvd 1 > qelllortkegteda — (13)  cies are close to resonance the flower is large with many
k=—o petals(as was illustrated in Fig.)3
Consider the 1:1 tongue in Figs. 5 antb)s-6(d). The
and we obtain formally the same behavior fft) as for the  dynamics is quasiperiodic, i.e., a modulated rotating wave,
forcing of rotating wavegSec. Ill) with wq playing the role  along the slice through the tongue At 0.3. In traversing
of ws. There are only two distinct types of dynamics for the tonguewy= w; changes by about a factor of 2 and
p(t) depending on whether or naty is in resonance with changes by about a factor of 1(fhis can be seen as the
w1. In the absence of resonance, the dynamics are quasipeghange in the mean value af in the phase portraitsThe
odic and the pathp(t) is a modulated rotating wave; in the paths in Figs. &)—6(d) differ from the unforced meandering
case of resonance the path is a modulated traveling wave.wave only in the number of petals: from about four petals at
Within any given tonguewy simply varies linearly with  the left tongue boundary where the frequency ratio is
w; (becausews=quwy); w; will also vary as a result of w;/w;=0.756 to just over five petals at the right tongue
changes in the orbit in the reduced system under forcing. ThBoundary where the frequency ratiods / w;=0.818.
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% 2 o= = ”’o ° o

S Wz \ Wq
W =w, FIG. 8. Phase portrait, Fourier spectrum, and gator a typical

three-frequency quasiperiodic orbit. The phase portrait depicts the
dense winding on a torus with two frequencieg and w; that are

not rationally related. The Fourier spectrum contains peaks at
w,,w; and all sum and difference frequencies. The pait) con-
sists of three independent frequencies, w,, and ws and after
sufficient time it would densely fill a region in the plane. The
parameter values awe;=10/3, ay,=—7.5, yy=3.732,A=0.3, and
T¢=6.3, corresponding to poingj in Fig. 5.

FIG. 7. Phase portrait, Fourier spectrum, and patehowing
resonant drift occurring within the 5:4 entrainment tongue
(5w¢=4wy). Only four of five bands are visible in the phase por- frame of reference’=(p— po)(.;ﬁiwlt the dynamics is qua-
trait. The pathp is a modulated traveling wave. The parameters aresiperiodic with two frequencies; and w,. Figure 8 shows
as in Fig. 5(with A=0.3 andT;=5.75), except that,=3.692. such a situation.

In the resonant case there exist and m’ such that

Throughout the 2:1 tongue in Fig. 5 we again find only o, +m’ws+n’'w,=0, and so there is a secular term in Eq.
quasiperiodic dynamics. In this case, if one goes into thg12) given byq,, ,€'%0. Thus integration gives
rotating framep’=(p—py)e '“1' one sees a state that is '
periodic with periodT; (becaus& =1 and sowq= ws). This _ _
periodic orbit has a two-cycléwo-orbit-per-periogi struc-  P(t)=po+ Ry (1 %0720+ (g, €' Po)t
ture similar to that of the-w phase portrait in Fig.@). This
can be understood as arising becalisés roughly twice as o Gm.n gil(@1Fmor+nwg)t+ gl
large the natural period in the reduced system. mnzm o’ (@11 Mo+ nwy)

For the parameter values of Figs. 5 and 6 we find no
resonances in;ide any of the low-order locked tongues. Howér, using the condition for resonanee,= —m’ w;—n’w,
ever, it is possible to adjust the parameters to obtain a resQ g defininge= g, e %o
nant drift inside one of the frequency-locked regions. In Fig. men '
7 we show a case where the valueygfhas been changed so

that there is a resonance inside the 5:4 tong¢like value of p(t)=po+ Rlei[(fm’wffn’wz)tJrqSoJr a1l ot

v, affects only the frequencw; and neitherw, nor the

location of the locked tongues shown in Fig) 3he reso- N Um.n

nance occurs witlw; = wy, though referring to Eq(13), the s v [mM=m) g+ (n—n")w,]

resonance is formally a 4:1 resonance betwagandw, (in
the 5:4 tonguew;=4wy SO w,=4wy). The resonant drift x @i{l(m=ma¢+(n—n")wslt+ o}
shown in Fig. 7 is a modulated traveling wave that thus can

be seen as periodic in a comoving reference frame. o o
Thus we again find drift in the case of a frequency resonance.

2. Unlocked frequencies There is a translating frame of referemqe= p—ct in which

In the quasiperiodic regime, outside the Arnol'd tongues,the path is quasiperiodic with the two frequenciep and

different types of behavior are obtained. Again there are two 2
cases corresponding to whether or not there is a resonance
betweenw, and the other two frequencies in the problem:
ws; and w,.

In the nonresonant casey;+ Mmw;+nw,#0 for all
n,m, we may integrate Eq12) to obtain

In Fig. 9 we show three examples of resonant drift for
nentrained states that is drift states that do not occur in any
low-order locking. In the first, Fig. @), w;=w¢, i.e.,
m’=—1 andn’=0. The translation speed of the pgihis
given by the coefficient); o corresponding to the peak at
frequency w;=w;. This strong resonance is the simplest
possible and has been seen experimen{al|g]. However,

p(t)=po+Rye/ (st Pot o) an almost equally fast drift occurs for the case
o ®w1=2w,— w;, i.e.,m'=1 andn’=—2. The nonlinear in-
+ i Gm.n gll(@1Fmogtnwy)t+dol teraction between natural frequeney and the driving fre-
mi=—= (01t Mot Nw,) quency s is such as to produce a significant peak in the

Fourier spectrum at@,— w;. When this peak coincides with
Thus p(t) contains three independent frequencies w,, w1 a strong drift occurs. For the third example we show the
and w; . This is mathematically the same as the hypermeanresonancew,=4w; that lies outside the phase diagram of
der found in unforced spiral systerfis7,32. In the rotating  Fig. 5.
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FIG. 10. Pathp, phase portrait, and Fourier spectrum of a cha-
otic state. The broadband Fourier spectrum results in an irregular tip
path. Parameters correspond to pdirin Fig. 5.

value of w;. Hence, while the ODE model can be used to
determine generally the important resonances, it cannot be
used to predict exactly which drifts will be strongest in any
particular experiment. In the ODE model it is not difficult to
find resonances for most combinations of srmallandn’.

We note that outside the entrainments, resonant drift
states should be generic. This is because in the unlocked
case,w,/w;s is irrational and hence the Fourier spectrum has
peaks on a dense set of frequencieso¢+ nw,). Therefore
the condition thatv; +m’ w¢+n’ w,=0 for somem’, n’ can
be expected to hold generically outside of the tongues. This
implies that at low forcing amplitude, where the unlocked
states have almost full measure, resonant-drift states should
abound. While true, this is not important in practice, for as
we have said, at low forcing amplitudes only a few peaks in
the Fourier spectrum are of significant size.

FIG. 9. Phase portraits, Fourier spectra, and pptikistrating
various resonant drift state@) w;=w,=2w/5.27, corresponding
to pointi in Fig. 5; (b) w;=2w,— w,=27/3.407, corresponding to
point k in Fig. 5; () w¢=w/4=2m/20.84, which is outside the
parameter range in Fig. 5. The amplitude of the forcing is the same, C. Chaotic states
A=0.1, in all cases. The drift speed is given by the size of the peak

. i For completeness we consider briefly the case of a chaotic
in the Fourier spectrum ab;.

state beyond the breakup of the torus in the reduced system.
We may formally proceed exactly as in the preceding sub-
3. Parameter dependence of resonant drifts section, but the Fourier spectra are no longer guaranteed to

For fixed model parameters one would like to know theconverge in the long-time limit. For this reason we limit
location of resonant drifts as a function of forcing amplitudeourselves to numerical examples. The Fourier spectra we
and forcing period, i.e., the location of drifts on the phasehave examined at the points labelédand(h) in Fig. 5 seem
diagram in Fig. 5. This is greatly complicated by the phe-to converge, but only after many thousands of primary rota-
nomenon of the frequency locking. The location and size ofion periodsT;. Figure 10 shows our results for the chaotic
peaks in the Fourier spectrum @Xt) are nonsmooth func- State corresponding to poirth). The Fourier spectrum is
tions of forcing amplitude and period, and alsq varies 9uite broadband, showing significant amplitudes at all fre-
nonsmoothly as a function of these. For small forcing ampli-quencies up to approximatedy, the secondary frequency of
tudes, however, the nonsmooth dependence of the variodiBe unforced system. There is a broad main peak in the vi-
quantities is not significant in practice, and the loci of drift cinity of, though slightly belowgw3. The pathp “randomly”
states can be well approximated by a set of smooth curves jmmps between a regular and drifting flower pattern.
parameter space. This is illustrated by the two curves in Fig.
5. V. DISCUSSION

Drift states originate from th&=0 axis at all points such
that w;+m’' w;+n'w,=0 for somem’,n’. Of these only a
few will be sufficiently strong to be detected in experiment We begin with a brief synopsis of our method and results.
or in numerical simulations of reaction-diffusion models. We The key to our dynamical-systems based approach has been
have illustrated some of the more important examples irto understand the role of symmetry in the problem and in
Figs. 5 and 9. Which drifts will be strongest depends on theparticular to separate the symmetry variables associated with
nonlinear interaction between, and w; as well as on the Euclidean symmetry(position p=x+iy and phase angle

A. Summary of results



4800 ROLF-MARTIN MANTEL AND DWIGHT BARKLEY 54

¢) from the remainder of the nonlinear systéthe reduced homogeneous periodic forcing. Their approach was based on
system. In making this separation we obtain a very simplea kinematic model of spiral dynamics in which one disre-
and broadly applicable treatment of the forcing problemgards the thickness of the excited area and models the spiral
which can be summarized in two parts. as a one-dimensional curve. This approach is nicely re-
(a) Reduced syster/e first consider the dynamics of the viewed in [33]. From their approach, Davydogt al. ob-
problem in the reduced system. For the particular modetfained the important features of rigidly rotating spiral waves
equations studied, this means considering a forced twoander periodic forcing. Specifically they discovered resonant
variable dynamical system. The dynamics of such a systemyrift and found the applicable scaling laws: at & teso-
are quite well understood. In the absence of fOfCing, Onl)'hance the drift Speed scales /a|§| for forcing amp“tudeA
two types of states are possible: steady states and limit cyclegd near resonance the radius of the secondary motion is
(corresponding to rigidly rotating and meandering spiralsproportional to the reciprocal of the frequency difference.
respectively. In the first case, with forcing, the dynamics of Moreover, in their approach the drift speed is related to prop-
the reduced system are then those of a driven damped oscirties of the medium and so one has the ability, in some
lator (the steady state is a stable fogus the later case with  cases, to obtain not only the qualitative form of the scaling
forcing one obtains a classical frequency-locking picture as gaws but also quantitative information about the drift speed.
function of forcing amplitude and forcing period. We empha-  Our work not only confirms the scaling laws but also
size that the frequency entrainments are associated with thfhows clearly that these scaling laws depend only on the
reduced system and are completely decoupled from the syndymmetries of the systerfsomething that has also been
metry variables. The Fourier spectra of the variables in th@oted in[5]). The scaling follows from the periodic forcing
reduced system then play a key role in determining the dyof a rotating wave in the plane at a resonant frequency. In no
namics of the full system. way does it matter that the system considered is an excitable
(b) Full systemThe dynamics of the full system, in par- medium or that the rotating wave is a spiral wave. In this
ticular the behavior of the patp(t)=x(t) +iy(t), can be sense our results are much more general that those of Davy-
found from the dynamics of the reduced system by simplejoy et al. because their approach is based on the case of a
guadrature. Qne can formally integrate the equation for thueakly excitable media. Our approach applies to any physi-
phase anglep=w and from this obtain an expression for cal system. Resonant drift for rigidly rotating spirals has

p(t) in the form of a Fourier series. The Fourier spectrumPeen confirmed in numerous experiments and numerical
contains peaks at frequencies+ w;, wherew; represents ~Simulations|7-10,23. . o _
any of the frequencies found in the spectra of variables in the There have been several recent studies of periodic forcing
reduced system. This may be a discrete or continuous s€ meandering spiral waves using the light-sensitive
depending on the dynamics of the reduced system. The frd3elousov-Zhabotinsky reactidi$chraderet al. [7,8]; Zykov
quencyw, is the mean value ob(t) from the reduced sys- €t al-[9,10). Resonant-drift-like behavior has been observed
tem and it enters the dynamics of the full system through th&0th in experiments and simulations at specific forcing fre-
integration of the equation for the phase angle. The full sysguencies. Zykowet al.[9] have found quasiperiodic drift for
tem exhibits resonant drift if there is a frequeney in the = forcing withT¢=Ty, i.e., forcing at the primary spiral period.
reduced system such thay + w;=0. The coefficient of the As we have seen, this is expected to lead to the fastest spiral

corresponding term in the Fourier spectrumobjives the drift. They have also found a drift with low-frequency forc-

speed of this drift. There is then a translating frame of refer—;g%{ \i/;lr\]/\ll(c:)mjhzy f;?;r:gt \?vshaftehceongsgirvr:issgsr?tIdrzlafthilnh-
ence in which the dynamics of the full system is of the same d, 41 PP bet 2;_'_ W i thpty g
type as in the reduced system. There is no resonant drift " eré f ) resonafms:re_i_?_/ve;eﬁ an K L d € nﬁ_e a rr—.:jso
w1+ w;#0 for all frequenciesw;. In this case there is a hant drits occur forl =Kk, for anyk and so this secondary

. : I . _ resonant drift is just one of many possible cases.
irgéaigr]l?kg%na?vgg?hféergléiggﬁwsl) Sv;/el}trf:]ln which the dynam Schradetret al. have also observed resonance drift of me-
y . aqdering waves in an Oregonator model. In particular, they
We stress that the above approach is general and does :Fave found a frequency-locked resonant driftToe=T, (the
depend on the particular form of dynamics in the reduce q y FARRE!

system. The ODE system that we have examined is just gntrainment is apparently within the;.T,=4:3 entrain-

low-order expansion for the dynamics of meandering spiral§nent tong_u}z[34]. . .
and thus is the most basic system describing forced mean- We believe that our analysis makes clear which frequency

dering waves. Our approach and intuition are nevertheles'gIteraCtlons give rise to drift in the meandering case, and we

fully applicable to higher-dimensional dynamics in the re.are able to predict where in parameter space drifts will occur.

duced system. Whatever model one takes for spiral dynamid%S far as we a:e aware, no one hﬁs fouhnd or sought any ‘?f
on the infinite plane, it will necessarily be invariant undert € more complex resonances such as those we show in F.'g'
some representation of Euclidean symmetry and one can olg-(b)' I.t should be. pOSSIb|e't0 fmd_ such'a resonance elth_er N
tain a reduced system by considering the full system modul(g?;]?er.'ment (;I)rl in numerical simulations of a reaction-
these symmetries. The condition for resonance drift then fol™! llijz(()qgerggyelbcking in the case of forced meandering
lows in exactly the way we have considered here. waves was initially described by Zykaat al. [10] and then
by Schradeeet al. [7]. The experimental parameters for the
Zykov work were such as to give a five-petal meander flower
Davydovet al.[2] provided an initial mathematical treat- for the unforced system and this motivated our choice of
ment of resonant drift for rigidly rotating spiral waves under ODE parameters for this work. With forcing they find evi-

B. Comparison with other work
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dence of 1:2, 1:1, and 2:1 entrainments. Schraded. show tion. We believe that the dynamical-systems based approach
evidence of 1:1, 3:2, and 2:1 entrainments. Zyktal. also  that we have adopted can be extended to these more compli-
show an Arnol'd tongue diagram from numerical studies ofcated situations.
an Oregonator model. This diagram is quite similar to that Several researchers have looked into feedback mecha-
shown in Fig. 5 from the ODE model. nisms to control spiral waves. Biktashev and Hol{iéh for

An interesting point is that in the numerical study of example, use feedback to overcome the effect of medium
Zykov etal. [9], the primary frequency is affected only poundaries in resonant drift. Gribt al. [36] have applied
slightly by the forcing amplitude. This is evidenced by the feedhack controlled forcing to obtain stable meandering pat-

fact that the frequency of primary resonance is essentiallygrs |t should be a relatively simple matter to incorporate
independent of forcing amplitude. On the contrary, in thefeedback into our ODE approach.

ODE system the primary frequency varies considerably with The other area in which it would be important to extend

g)lgg?i?] dawz)altltt?]ieperlirr]‘r?afr?/r?rlgguféi?:;ir;]y6r?g:;zdceoﬁ;:.si[g(]arablour results is in the_ direction of bifu_rcation.theory. Therg are
with forcing period. X]any aspects of this work tha.t are mterestmg mgthematmally
but we have not addressed with mathematical rigor. It would
be interesting, for example, to consider the interaction of
periodic forcing with the Hopf bifurcation from rotating to
We conclude by noting some areas for future work. Asmodulated rotating waves. Periodic forcing at a Hopf bifur-
stated in the Introduction, a large part of the motivation forcation point is an interesting mathematical situa{iag, 29,
this work has been the belief that it might some day be posand the additional interplay with the symmetries of spiral
sible to use resonant drift as a means of low-voltage cardiagyes is worth exploring. Also worth consideration is the
defibrillation. If this is so, then a clear theoretical under-c55e where the reduced dynamics are more complicated than
standing of periodic forcing is necessary for spiral waves tgeriodic, for it is known that spiral waves in excitable media
bg predictable in the pre§ence.of inhomogeneities, anisotr@syhipit quite complex dynamics in the reduced system
pies, and lateral boundaries. Biktashev and Holigrhave (17,37, Finally, there has been recent work using “spiral
made progress in understanding the interactions of driftingoundary conditions” to generate rotating waves in simple
spirals with boundaries, but further work is necessary to Ungne-component chemical reactiofa7]. It would be quite

derstand fully the dynamics of forced spiral waves in a sysinteresting to apply periodic forcing to such a system.
tem with the spatial structure of heart tissue. Most impor-

tantly, one needs to understand the periodic forcing of waves
in three space dimension&6,35. The waves of electrical
activity in the heart are truly three dimensional and one must We wish to thank V. Biktashev for helpful discussions
properly address periodic forcing in this case if one is toand L. S. Tuckerman for her suggestions. This work has been
have useful theoretical understanding of cardiac defibrillasupported in part by a grant from the Royal Society.

C. Future work
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