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An analysis of periodically forced spiral waves in excitable media provides a simple explanation of the
resonant drift dynamics and frequency entrainments observed both in laboratory experiments and in simula-
tions of partial-differential equations. Forcing of both rigidly rotating and meandering spirals is considered. In
the meandering case we predict the existence of different resonant drift states that could be detected in
experiments.@S1063-651X~96!10411-6#

PACS number~s!: 82.40.Ck

I. INTRODUCTION

The response of spiral waves in excitable media to homo-
geneous periodic forcing is of interest for a variety of rea-
sons. First, as Figs. 1~a! and 1~b! illustrate, a drift in the
location of a rotating spiral wave can be produced by peri-
odically varying a system parameter at the spiral rotation
frequency. This has been recognized as a possible means of
low-voltage cardiac defibrillation@1–6#; the idea is essen-
tially that with relatively weak periodic forcing one can in-
duce rotating waves within a fibrillating heart to drift to a
boundary~heart’s surface! where they can no longer be sus-
tained. A second reason for interest in this problem is that
spiral waves occur in a variety of biological systems and
these are often subjected to some form of external forcing,
as, for example, might occur due to daily variations in sun-
light, and it is important to understand the role such external
driving can play in these systems. Finally, as shown in Figs.
1~c! and 1~d!, when ‘‘meandering’’ waves in excitable media
are periodically forced, they can exhibit complex motions,
and it is desirable to have a simple mathematical description
of these motions.

Our approach shall be to consider the periodic forcing of
spiral waves from a dynamical-systems view point and to
show that much of the spiral behavior can be deduced simply
from the interaction of dynamics with system symmetries.
We base our analysis on a system of ordinary differential
equations described in Sec. II. This system has been shown
to model well the dynamics of spiral waves, though it has not
been obtained by rigorous reduction of a partial-differential
equation model of excitable media.

We shall be particularly interested in the forcing of me-
andering spiral waves, i.e., the case where the unforced sys-
tem has quasiperiodic waves. This interesting situation has
received much attention recently in experiments and simula-
tions @5,7–10#, but it has not been given a proper theoretical
footing. We show that many drifting states are possible in the
meandering case and we predict some not previously seen in
experiment.

We stress that while our focus is the periodic forcing of
spiral waves in excitable media, our approach is general and
hence our results on homogeneous, periodic forcing are fully
applicable to any system exhibiting rotating waves in the
presence of distance-preserving symmetries of the plane.

II. MODEL EQUATIONS

Our starting point is a system of ordinary differential
equations~ODEs! describing the dynamics of periodic and
meandering spiral waves in homogeneous, unbounded excit-
able media@12–14#:

ṗ5seif,

ḟ5v,
~1!

ṡ5s f~s2,v2!,

v̇5vg~s2,v2!,

wherep is complex andf, s, andv are real withs>0. As
the notation suggests,p is thought of as the position of the
spiral tip and we writep5x1 iy . Thens is the linear speed
~scalar! and v is the instantaneous rotational frequency of
the spiral tip. The real-valued functionsf andg are

f ~s2,v2!521/41a1s
21~a2 /g0

2!v22s4,

g~s2,v2!5s22v2/g0
221. ~2!

Equations~1! and ~2! have been derived from a symmet-
ric bifurcation analysis of spiral dynamics@12–14#, but here
a slightly different form is used@15#. They are essentially the
simplest system of ODEs that have the relevant symmetries
for two-dimensional excitable media~namely, rotations, re-
flections, and translations! and have a supercritical Hopf bi-
furcation from rotating-wave solutions. Thus these equations
can be thought of as a kind of normal form for spiral dynam-
ics. While the equations have been obtained from an analysis
of the transition from periodic to meandering spiral dynam-
ics, they have been shown to describe qualitatively a wide
range of behavior observed in homogeneous excitable media
@14,16–18#.

Consider thes-v subsystem described by

ṡ5s f~s2,v2!, v̇5vg~s2,v2!. ~3!

It can be seen that the subsystem decouples in Eqs.~1! and
thatf(t) andp(t)5x(t)1 iy(t) can be found by quadrature
onces(t) andv(t) are known. Thus the dynamics of rotat-
ing and meandering spiral waves in homogeneous excitable
media can be reduced to a simple two-variable ODE system
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~3! together with a two quadratures. We shall refer to the
system described by Eqs.~3! as the reduced ors-v system
and Eqs.~1! as the full system.

To investigate the effect of parametric periodic forcing on
spiral waves, we let one of the model parameters vary sinu-
soidally with time. Specifically we let

a2~ t !5a2
01Asin~v f t !, ~4!

whereA andv f are the amplitude and frequency of the forc-
ing. The period of the forcing shall be denotedTf
52p/v f . Our approach does not require the specific case of
sinusoidal forcing, but for our numerical work we shall re-
strict our attention to this particular case. We shall frequently
be interested in the response to small amplitude forcing be-

cause this has been considered in experiments and simula-
tions and also because scaling behavior for solutions can be
obtained in the limit of weak forcing. Hence, in the follow-
ing we shall frequently setA5e.

There is presently no established mapping between pa-
rameters in the ODE model and those of any excitable me-
dium ~experimental system or reaction-diffusion model! and
hence we cannot establish a direct connection between the
forcing of an excitable medium~through light variations, for
example! and the forcing we choose in Eq.~4!. There has
been recent work in this direction@19–21#. Our concern,
however, is to understand thegenericresponse of waves to
periodic forcing, i.e., we care about features that are inde-
pendent of specific details of the medium and the forcing,
and for this no rigorous connection is necessary between the

FIG. 1. Illustration of the effects of periodic forcing on the spiral-wave dynamics.~a! Periodically rotating solution in a reaction-diffusion
model of homogeneous excitable media@11#. The gray scale shows values of the slow species and the white curve shows the path of the
spiral tip. The model parameters area50.8,b50.05, ande50.02.~b! Same conditions as~a!, except with spatially homogeneous forcing
at the rotation frequency of the unforced spiral. The induced drift in the spiral location is from top to bottom in this case. Here
b50.0510.0035 sin(1.7434t). ~c! Quasiperiodic state from the ordinary differential equation model described in the text. The state corre-
sponds to a ‘‘meandering’’ spiral wave. The parameters area1510/3,a2527.5, andg053.8. ~d! Effect of periodically forcing this wave:
a2527.510.6 sin(0.3222t).
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ODEs and extended excitable media. Models of real excit-
able systems such as the Belousov-Zhabotinsky reaction@22#
are only approximate in any event and therefore it is reason-
able to focus on generic properties that are common to any
forced system with the symmetries of two-dimensional ex-
citable media ~rotations, reflections, and translations!,
whether they are spiral waves in excitable media or not.

III. FORCING OF PERIODIC WAVES

We first consider forcing in the case where the unforced
dynamics are rotating waves, i.e., rigidly rotating spirals.
This situation is rather well understood from the work of
Davydovet al. @2,23#, who use a kinematic approach to spi-
ral dynamics. We consider this here because it provides a
simple case for which we can illustrate our approach.

Rotating-wave solutions to the unforced full system Eqs.
~1! are obtained when the reduced system Eqs.~3! has non-
zero steady-state solutions, i.e., there are nonzero valuess1
andv1 for which f (s1

2 ,v1
2)5g(s1

2 ,v1
2)50. To see that these

are rotating waves for the full system, one integrates theḟ
equation to obtainf(t)5v1t1f0, wheref05f(0). Sub-
stituting this into the equation forṗ gives

ṗ5s1e
i ~v1t1f0!, ~5!

which in turn integrates to

p~ t !5p01
s1
iv1

ei ~v1t1f0!5p01R1e
i ~v1t1f01d1!,

where p0 is a constant of integration,R1[us1 /v1u, and
d157p/2 depending on the sign ofv1. Thus we see that
p traces out a circle of radiusR1 with frequencyv1. This
rotating-wave solution is stable in the full system so long as
the steady state (s1 ,v1) is stable in thes-v subsystem.

We consider now the effect that periodic forcing has on a
stable rotating wave. For this, we need solutions to the re-
duced system Eqs.~3! when a2 is given by Eq.~4!. We
know that at least for small forcing amplitudes, the solution
in the reduced system will be periodic and can be written in
the form

s~ t !5s11 s̃~ t !,

v~ t !5v11ṽ~ t !,

wheres1 andv1 are the mean values ofs andv, and s̃(t)
and ṽ(t) are periodic with periodTf . For weak forcing,
A5e, s̃ and ṽ areO(e). While it is possible to obtain ex-
pressions fors̃ and ṽ perturbatively in powers ofe, these
expressions are complicated and not important in detail. It is
sufficient to note that when expressed in the form of Fourier
series

s̃~ t !5 (
k52`

`

ŝke
ikv f t, ṽ~ t !5 (

k52`

`

v̂ke
ikv f t,

the scaling of coefficients withe is

uŝku,uv̂ku5O~e uku!, kÞ0,

ŝ0 ,v̂050.

As we shall show, the Fourier spectra ofs̃(t) and ṽ(t) are
key to determining the response of rotating waves to periodic
forcing. Note that the mean values ofs̃(t) andṽ(t) are zero
by definition, henceŝ05v̂050; however,s1 andv1, which
are the mean values ofs and v, are modified by terms
O(e2) ase→0.

To find p(t) for the periodically forced system, first we
integrate the equation

ḟ5v~ t !5v11ṽ~ t !

to obtain

f~ t !5f01v1t1V~ t !,

whereV(t) is defined by

V~ t ![E
0

t

ṽ~ t8!dt8.

The functionV(t) is periodic with periodTf becauseṽ has
zero mean and periodTf . Substitution into theṗ equation
gives

ṗ~ t !5s~ t !eif~ t !5@s11 s̃~ t !#eiV~ t !ei ~v1t1f0!;

by definingH(t)[s(t)eiV(t)2s1, this can be written

ṗ~ t !5s1e
i ~v1t1f0!1H~ t !ei (v1t1f0). ~6!

The scaling ofH(t) is readily found by substitution of
s(t) andṽ(t) into the definition ofH. The result is thatH is
a periodic function with periodTf , which when expanded as
a Fourier series

H~ t !5 (
k52`

`

hke
ikv f t ~7!

has coefficients that scale as

uhku5O~e uku!, kÞ0

uh0u5O~e2!. ~8!

Note that the functionH(t) is complex.
From Eqs.~6!–~8! it follows that ṗ has the form of the

unforced expression Eq.~5! plus a perturbation that is
O(e). This is because theuku51 terms dominate series~7! as
e→0 and this term isO(e). Rewriting Eq. ~6! using the
Fourier expansion forH(t), we have

ṗ~ t !5s1e
i (v1t1f0)1 (

k52`

`

hke
i @~v11kv f !t1f0#. ~9!

A. Nonresonant case

There are two cases to consider. The first is the non-
resonant case defined by the condition thatv11kv fÞ0 for
all k or, equivalently, that the forcing periodTf is not a
multiple of the natural periodT152p/v1. This is the ge-
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neric situation. Then because the Fourier series is uniformly
convergent we can integrate~9! term by term to findp(t):

p~ t !5p01R1e
i ~v1t1f01d1!

1 (
k52`

`
hk

i ~v11kv f !
ei [ ~v11kv f !t1f0] , ~10!

where p0, R1, and d1 have the same meanings as in the
unforced case.

The pathp(t) described by Eq.~10! is of the form of a
circle given by the unforced solution plus a doubly periodic
solution with frequenciesv1 and v f . For any fixed, non-
resonant forcing frequency, the perturbation of the circular
solution goes to zero linearly with the amplitude of forcing.
This is because theuku51 terms dominate the Fourier expan-
sion ~10! and this terms goes to zero linearly with forcing
amplitude.

The solution given by Eq.~10! is known as amodulated
rotating wave@24#. There is an appropriately rotating frame
of reference in which the solution is seen as periodic. Such
a reference frame is given by the transformationp8
5(p2p0)e

2 iv1t. In this frame the dynamics are periodic
with frequencyv f . Generically the frequenciesv1 andv f
will be incommensurate and the dynamics described by
p(t) will be quasiperiodic. Figure 2 illustrates generic peri-
odic forcing of a rotating-wave solution.

The behavior near a frequency resonance may be seen by
fixing the forcing amplitude and varying the forcing fre-

quencyv f such thatv11k8v f becomes small for somek8.
The coefficient of the term in Eq.~10! with frequency
D[v11k8v f dominates the series. In such a case we get

p~ t !.p01R1e
i ~v1t1f01d1!1R2e

i ~Dt1f01d2!,

whereR2[uhk8 /Du and d2[arg(hk8 / iD). The pathp(t) is
approximately the superposition of two circular motions hav-
ing radiiR1 andR2 and frequenciesv1 andD, respectively.
If v1 /D.0, the two frequencies are of the same sign and the
resulting path has the form of a flower with inward facing
petals. Otherwise the frequencies are of opposite sign and the
resulting flower has outward facing petals; see Fig. 3. As
D→0, the radiusR2 diverges and we get to the case of
frequency resonance.

B. Resonant case

The resonant case is defined by the condition that
v11k8v f50 for somek8. The series in Eq.~9! then has a
secular termhk8e

if0, so integrating Eq.~9! gives

p~ t !5p01R1e
i ~v1t1f01d1!1~hk8e

if0!t

1 (
kÞk8

hk
i ~v11kv f !

ei [ ~v11kv f !t1f0]

5p01ct1R1e
i ~2k8v f t1f01d1!

1 (
kÞk8

hk
i ~k2k8!v f

ei @~k2k8!v f t1f0#,

wherec5hk8e
if0.

Thus, at resonance, in addition to the periodic part of
p(t), the expansion contains a term that is linear int. The
‘‘drift’’ in position implied by this term is known as resonant
drift. It has been known for almost a decade@1,2# and has
now been observed in a number of different systems
@7–10,25#.

In the resonance case, there is a linearly translating frame
of referencep85p2ct, within which the state is periodic. In
dynamical systems terminology such a solution is called a
modulated traveling wave. The drift speed is given by

FIG. 2. Illustration of the generic case of periodic forcing of a
rotating wave. Without periodic forcing, there is~a! a stable steady
state in the reduced system and~b! a rotating wave in the full
system shown by a plot ofp(t) in the complex plane. The rotation
frequencyv1 is given by the steady-state value ofv. In the case of
forcing, ~c! the reduced system has limit cycle and~d! the full
system has a quasiperiodic solution: a modulated rotating wave.
The two frequencies in this case arev f , the forcing frequency, and
v1, the mean value ofv in the reduced system. As can be seen,
v1 is shifted from the unforced value. The parameter values are
a1510/3, a2523.5, and g053.732, with forcing a2523.5
1sin(2p t/2.4) in the lower figures.

FIG. 3. Effect of periodic forcing in the vicinity of a 1-1 reso-
nancev12v f50. The pathp(t) is plotted for four values of the
forcing frequencyv f with forcing amplitudeA51.0. The corre-
sponding secondary radiiR2 are shown, except at the point of reso-
nancev15v f52.714, where it is infinite. In the vicinity of the
resonance,R2;1/uDu, whereD5v12v f . The parameter values
area1510/3,g053.732, anda2523.51Asin(2pvft).
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ucu5uhk8u, which scales according toe uk8u ase→0. The pe-
riod in the linearly translating frame isTf5uk8uT1 and the
angle of the drift is determined by the coefficienthk8 and the
integration constantf0.

In Fig. 4 we show three cases of resonant forcing. For the
small amplitude forcing in Fig. 4~a!, the only resonance pro-
ducing detectable drift is the primary resonancev15v f ,
i.e., k8521. Even this drift is quite slow. The higher-
harmonic peaks in the Fourier spectrum ofH are very small
and so drifts associated with higher-order resonances are in-
significant. With the larger amplitude forcing in Fig. 4~b!,
the primary peakh21 is larger and so the drift speed at 1:1
resonance is larger. Moreover, due to nonlinearity, the orbit
in the reduced system is no longer nearly elliptical and hence
higher-harmonic peaks have sufficient amplitude. Thus
higher-order resonances can provide noticeable drift as is
illustrated in Fig. 4~c!. Note that in Fig. 4 and throughout this
paper we plot the magnitude of Fourier coefficients on a
linear scale.

IV. FORCING OF MODULATED ROTATING WAVES

We now consider application of periodic forcing to the
case where the unforced dynamics are modulated rotating
waves. These waves are quasiperiodic states that correspond
to meandering spiral dynamics@14,26#.

A modulated rotating wave in the unforced full system
Eq. ~1! is obtained when the reduced system Eq.~3! has a
periodic orbit„s(t),v(t)…, wheres andv are periodic with
period denotedT2. These periodic orbits arise from a super-
critical Hopf bifurcation of steady-state solutions in the re-
duced system. The modulated rotating waves in the full sys-
tem are then composed of two frequenciesv1 andv2, where
v1 is the mean value ofv andv252p/T2 is the frequency
of the orbit in the reduced system. Near a Hopf bifurcation
v1 will be close to the steady value ofv andv2 will be
close to the imaginary part of the bifurcating eigenvalues.
The pathp(t) exhibits typical behavior for meandering spiral
waves in excitable media@14,16–18#.

The modulated rotating waves corresponding to spiral
meandering have exactly the same mathematical character as
the modulated rotating waves described in Sec. III. In fact,
the difference between the two cases is simply the origin of
the secondary frequency. For classical two-frequency mean-
dering waves, the secondary frequencyv2 arises via a Hopf
bifurcation, whereas in the forced rotating-wave case, the
second frequency comes from forcing and is thus simply the
forcing frequencyv f . In both cases the primary frequency
v1 has the same meaning.

A. Reduced system: A forced oscillator

We approach the study of periodically driven meandering
waves by first considering periodic forcing of the periodic
orbit in the reduced system and then by considering the dy-
namics that follows in the full systems. Figure 5 shows a
phase diagram for the dynamics of the reduced system as a
function of the two forcing parameters: forcing periodTf and
forcing amplitudeA. Pathsp(t) in the full system and phase
portraits (s,v) in the reduced system are shown in Fig. 6 for
labeled points in the phase diagram. The parameters in the
ODE model are chosen such that the unforced system has a
five-petal meander pattern. This can be seen in Fig. 6~a!.
With high-frequency forcing the system behaves as if the
driven parametera25a2

01Asin(vft) were constant with its
time average valuea2

0. Hence the pathp and s-v phase
portrait at point~a! are indistinguishable from those of the
unforced system. We shall defer consideration of the paths
p(t) until Sec. IV B.

The phase diagram in Fig. 5 is typical for a forced non-
linear oscillator; see, e.g.,@27–30#. There are regions of fre-
quency locking ~Arnol’d tongues! within which the fre-
quency v2 is rationally related to the driving frequency
v f . These are thep:q entrainments whereTf /T25p/q. We
show only a few of the low-order entrained regions. The
p:q tongues open fromA50 asA1/p, so except for the 1:q
tongues, all tongues are cusps atA50.

Phase portraits in Figs. 6~b!–6~d! show the dynamics of
the reduced system in passing through the 1:1 tongue. The
orbit in the s-v system adjusts so that the frequencyv2 is
equal to the forcing frequencyv f throughout this band.

FIG. 4. Phase portraits, Fourier spectra, and pathsp for different
resonances.~a! Small amplitude forcing:A50.2 andTf51.9875.
Forcing creates a nearly elliptical orbit around the fixed point of the
unforced reduced system and only the primary peak in the Fourier
spectrum has significant size. In this case only the primary reso-
nancev15v f produces detectable resonant drift. The parameters
are a1510/3, a2523.5, andg053.732. ~b! Higher amplitude
forcing: A51.2,Tf52.546 85, and other parameters as in~a!. The
mean valuev1 of the periodic orbit has changed as a result of
forcing and the forcing frequency is adjusted such thatv f5v1. The
primary peak is much larger@note the change of scale between~a!
and ~b!# and the higher-order peaks in the Fourier spectrum are
visible. ~c! A 2:1 resonance with the parameterg0 changed so that
v152v f . The parameters are as in~b!, exceptg057.363. All
paths shown are over the same time interval.
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Phase portrait~e! shows the orbit in the 2:1 tongue where
Tf /T252.

Separating regions of entrainment are curves~not shown!
on which the two periods are irrationally related and the
dynamics is quasiperiodic. Case~g! is effectively a quasi-
periodic example, that is, it does not lie in any low-order
entrainment region and is a good approximation to a trajec-
tory on the underlying invariant torus for the reduced system.

For sufficiently large forcing amplitudes the underlying
invariant torus breaks up. This is signaled by the overlap of
Arnol’d tongues and by period-doubling bifurcations of the
entrained states@27,31#. Once the torus has broken, one can
expect chaotic states to exist as well. Points~f! and~h! illus-
trate the dynamics beyond the breakup of the torus. As with
the quasiperiodic state, we do not know whether or not these
are strictly chaotic, but they are good representations of the
complex dynamics found at sufficiently large forcing ampli-
tudes.

B. Full system: Tip paths

We now consider the form of solutions in the full system.
We consider in detail only the cases where the dynamics of
the reduced system is periodic~entrained! or quasiperiodic.
We give a brief treatment of the chaotic case in Sec. IV C.

For either entrained or quasiperiodic states, the solution in
the reduced system can be written in the form

s~ t !5s11 s̃~ t !,

v~ t !5v11ṽ~ t !,

wheres1 andv1 are the mean values ofs andv, and s̃(t)
andṽ(t) are doubly periodic with periodsT2 andTf . These
two periods will be commensurate or not depending on
whether the system is entrained or not. However, for the
present we shall not distinguish between the two situations.
Unlike in the case of rotating waves,s̃ and ṽ do not go to
zero as the forcing amplitude goes to zero, because there is a
~finite-amplitude! periodic orbit in the unforced system.
Hences̃ and ṽ cannot be treated as small quantities.

To find p(t), we first integrate thef equation to obtain

f~ t !5f01v1t1V~ t !,

whereV(t) is again is defined by

V~ t ![E
0

t

ṽ~ t8!dt8.

The functionV is doubly periodic with periodsT2 andTf .
Substitution into theṗ equation gives

ṗ~ t !5s~ t !eif~ t !5@s11 s̃~ t !#eiV~ t !ei ~v1t1f0!

5s1e
i ~v1t1f0!1Q~ t !ei ~v1t1f0!,

where in the last equality we have definedQ(t)
[s(t)eiV(t)2s1. This doubly periodic, complex function
plays the same role that the periodic functionH(t) played in
Sec. III. Here, however,Q(t) is notO(e).

The functionQ(t) can be expanded in a Fourier series as

Q~ t !5 (
m,n52`

`

qm,ne
i ~mv f1nv2!t. ~11!

Thus we have

ṗ~ t !5s1e
i ~v1t1f0!1 (

m,n52`

`

qm,ne
i [ ~v11mv f1nv2!t1f0] .

~12!

One may now integrate this equation to obtainp(t). As
we shall see, there are four distinct dynamical states depend-
ing on whether or not the frequenciesv2 andv f are locked
and depending on whether or not there is a frequency reso-
nance. Frequency locking is determined solely by the dy-
namics of the reduced system. Resonance occurs if there is a
secular term in the expansion forṗ in Eq. ~12!, i.e., if there
existm8,n8 such thatv11m8v f1n8v250. This is just the
generalization of the resonance condition found for the forc-
ing of rotating waves considered in Sec. III. We address
separately the cases wherev2 andv f are and are not fre-
quency locked and we discuss the issue of resonance for each
case. We then consider the parameter dependence and scal-
ing of solutions.

1. Locked frequencies

Within an Arnol’d tongue the frequenciesv2 andv f are
rationally related, so that there exists a frequencyvd such
thatv25pvd andv f5qvd . Thus the Fourier series can be
rewritten as a sum over frequencieskvd :

FIG. 5. Phase diagram for the ODE model as a function of
forcing periodTf and forcing amplitudeA. T2

0 is the secondary
period in the absence of forcing. Solid curves show the boundaries
of some of the low-order entrainment tongues. Short-dashed curves
are loci of period-doubling bifurcations for the 1:2 and 1:1 locked
states. The period doubling in the 2:1 tongue is outside the range of
the figure. Long-dashed curves are loci of the two strongest reso-
nant drift states within the parameter range of the figure. Letters
label points shown in Fig. 6 and elsewhere. The parameter values
area1510/3,a2

0527.5, andg053.732.
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ṗ~ t !5s1e
i ~v1t1f0!1 (

k52`

`

qke
i [ ~v11kvd!t1f0] , ~13!

and we obtain formally the same behavior forp(t) as for the
forcing of rotating waves~Sec. III! with vd playing the role
of v f . There are only two distinct types of dynamics for
p(t) depending on whether or notvd is in resonance with
v1. In the absence of resonance, the dynamics are quasiperi-
odic and the pathp(t) is a modulated rotating wave; in the
case of resonance the path is a modulated traveling wave.

Within any given tongue,vd simply varies linearly with
v f ~becausev f5qvd); v1 will also vary as a result of
changes in the orbit in the reduced system under forcing. The

pathp is a function of bothv1 andvd . When the frequen-
cies are close to resonance the flower is large with many
petals~as was illustrated in Fig. 3!.

Consider the 1:1 tongue in Figs. 5 and 6~b!–6~d!. The
dynamics is quasiperiodic, i.e., a modulated rotating wave,
along the slice through the tongue atA50.3. In traversing
the tongue,vd5v f changes by about a factor of 2 andv1
changes by about a factor of 1.5~this can be seen as the
change in the mean value ofv in the phase portraits!. The
paths in Figs. 6~b!–6~d! differ from the unforced meandering
wave only in the number of petals: from about four petals at
the left tongue boundary where the frequency ratio is
v1 /v f50.756 to just over five petals at the right tongue
boundary where the frequency ratio isv1 /v f50.818.

FIG. 6. Pathsp for the full system and phase portraits in the reduced system at points corresponding to those labeled in Fig. 5.
~a! High-frequency forcing. Here the dynamics are indistinguishable from that of the undriven system.~b!–~d! States within the 1:1 tongue.
~e! State within the 2:1 tongue.~f! and~h! Chaotic orbits.~g! Quasiperiodic orbit near the 1:1 tongue. The horizontal bars show unit length
in the p plane.
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Throughout the 2:1 tongue in Fig. 5 we again find only
quasiperiodic dynamics. In this case, if one goes into the
rotating framep85(p2p0)e

2 iv1t one sees a state that is
periodic with periodTf ~becauseq51 and sovd5v f). This
periodic orbit has a two-cycle~two-orbit-per-period! struc-
ture similar to that of thes-v phase portrait in Fig. 6~e!. This
can be understood as arising becauseTf is roughly twice as
large the natural period in the reduced system.

For the parameter values of Figs. 5 and 6 we find no
resonances inside any of the low-order locked tongues. How-
ever, it is possible to adjust the parameters to obtain a reso-
nant drift inside one of the frequency-locked regions. In Fig.
7 we show a case where the value ofg0 has been changed so
that there is a resonance inside the 5:4 tongue.~The value of
g0 affects only the frequencyv1 and neitherv2 nor the
location of the locked tongues shown in Fig. 5.! The reso-
nance occurs withv15v f , though referring to Eq.~13!, the
resonance is formally a 4:1 resonance betweenvd andv1 ~in
the 5:4 tongue,v f54vd so v154vd). The resonant drift
shown in Fig. 7 is a modulated traveling wave that thus can
be seen as periodic in a comoving reference frame.

2. Unlocked frequencies

In the quasiperiodic regime, outside the Arnol’d tongues,
different types of behavior are obtained. Again there are two
cases corresponding to whether or not there is a resonance
betweenv1 and the other two frequencies in the problem:
v f andv2.

In the nonresonant case,v11mv f1nv2Þ0 for all
n,m, we may integrate Eq.~12! to obtain

p~ t !5p01R1e
i ~v1t1f01d1!

1 (
m,n52`

`
qm,n

i ~v11mv f1nv2!
ei [ ~v11mv f1nv2!t1f0] .

Thus p(t) contains three independent frequenciesv1, v2,
andv f . This is mathematically the same as the hypermean-
der found in unforced spiral systems@17,32#. In the rotating

frame of referencep85(p2p0)e
2 iv1t the dynamics is qua-

siperiodic with two frequenciesv f andv2. Figure 8 shows
such a situation.

In the resonant case there existn8 and m8 such that
v11m8v f1n8v250, and so there is a secular term in Eq.
~12! given byqm8,n8e

if0. Thus integration gives

p~ t !5p01R1e
i ~v1t1f01d1!1~qm8,n8e

if0!t

1 (
m,nÞm8,n8

qm,n
i ~v11mv f1nv2!

ei [ ~v11mv f1nv2!t1f0] ,

or, using the condition for resonancev152m8v f2n8v2
and definingc5qm8,n8e

if0,

p~ t !5p01R1e
i [ ~2m8v f2n8v2!t1f01d1]1ct

1 (
m,nÞm8,n8

qm,n
i @~m2m8!v f1~n2n8!v2#

3ei $[ ~m2m8!v f1~n2n8!v2] t1f0%.

Thus we again find drift in the case of a frequency resonance.
There is a translating frame of referencep85p2ct in which
the path is quasiperiodic with the two frequenciesv f and
v2.

In Fig. 9 we show three examples of resonant drift for
nonentrained states that is drift states that do not occur in any
low-order locking. In the first, Fig. 9~a!, v15v f , i.e.,
m8521 andn850. The translation speed of the pathp is
given by the coefficientq1,0 corresponding to the peak at
frequencyv15v f . This strong resonance is the simplest
possible and has been seen experimentally@7,9#. However,
an almost equally fast drift occurs for the case
v152v22v f , i.e.,m851 andn8522. The nonlinear in-
teraction between natural frequencyv2 and the driving fre-
quencyv f is such as to produce a significant peak in the
Fourier spectrum at 2v22v f . When this peak coincides with
v1 a strong drift occurs. For the third example we show the
resonancev154v f that lies outside the phase diagram of
Fig. 5.

FIG. 7. Phase portrait, Fourier spectrum, and pathp showing
resonant drift occurring within the 5:4 entrainment tongue
(5v f54v2). Only four of five bands are visible in the phase por-
trait. The pathp is a modulated traveling wave. The parameters are
as in Fig. 5~with A50.3 andTf55.75), except thatg053.692.

FIG. 8. Phase portrait, Fourier spectrum, and pathp for a typical
three-frequency quasiperiodic orbit. The phase portrait depicts the
dense winding on a torus with two frequenciesv2 andv f that are
not rationally related. The Fourier spectrum contains peaks at
v2 ,v f and all sum and difference frequencies. The pathp(t) con-
sists of three independent frequenciesv1, v2, and v f and after
sufficient time it would densely fill a region in thep plane. The
parameter values area1510/3,a2527.5,g053.732,A50.3, and
Tf56.3, corresponding to point (g) in Fig. 5.
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3. Parameter dependence of resonant drifts

For fixed model parameters one would like to know the
location of resonant drifts as a function of forcing amplitude
and forcing period, i.e., the location of drifts on the phase
diagram in Fig. 5. This is greatly complicated by the phe-
nomenon of the frequency locking. The location and size of
peaks in the Fourier spectrum ofQ(t) are nonsmooth func-
tions of forcing amplitude and period, and alsov1 varies
nonsmoothly as a function of these. For small forcing ampli-
tudes, however, the nonsmooth dependence of the various
quantities is not significant in practice, and the loci of drift
states can be well approximated by a set of smooth curves in
parameter space. This is illustrated by the two curves in Fig.
5.

Drift states originate from theA50 axis at all points such
thatv11m8v f1n8v250 for somem8,n8. Of these only a
few will be sufficiently strong to be detected in experiment
or in numerical simulations of reaction-diffusion models. We
have illustrated some of the more important examples in
Figs. 5 and 9. Which drifts will be strongest depends on the
nonlinear interaction betweenv2 andv f as well as on the

value ofv1. Hence, while the ODE model can be used to
determine generally the important resonances, it cannot be
used to predict exactly which drifts will be strongest in any
particular experiment. In the ODE model it is not difficult to
find resonances for most combinations of smallm8 andn8.

We note that outside the entrainments, resonant drift
states should be generic. This is because in the unlocked
case,v2 /v f is irrational and hence the Fourier spectrum has
peaks on a dense set of frequencies (mv f1nv2). Therefore
the condition thatv11m8v f1n8v250 for somem8, n8 can
be expected to hold generically outside of the tongues. This
implies that at low forcing amplitude, where the unlocked
states have almost full measure, resonant-drift states should
abound. While true, this is not important in practice, for as
we have said, at low forcing amplitudes only a few peaks in
the Fourier spectrum are of significant size.

C. Chaotic states

For completeness we consider briefly the case of a chaotic
state beyond the breakup of the torus in the reduced system.
We may formally proceed exactly as in the preceding sub-
section, but the Fourier spectra are no longer guaranteed to
converge in the long-time limit. For this reason we limit
ourselves to numerical examples. The Fourier spectra we
have examined at the points labeled~f! and~h! in Fig. 5 seem
to converge, but only after many thousands of primary rota-
tion periodsT1. Figure 10 shows our results for the chaotic
state corresponding to point~h!. The Fourier spectrum is
quite broadband, showing significant amplitudes at all fre-
quencies up to approximatelyv2

0, the secondary frequency of
the unforced system. There is a broad main peak in the vi-
cinity of, though slightly below,v2

0. The pathp ‘‘randomly’’
jumps between a regular and drifting flower pattern.

V. DISCUSSION

A. Summary of results

We begin with a brief synopsis of our method and results.
The key to our dynamical-systems based approach has been
to understand the role of symmetry in the problem and in
particular to separate the symmetry variables associated with
Euclidean symmetry~position p5x1 iy and phase angle

FIG. 9. Phase portraits, Fourier spectra, and pathsp illustrating
various resonant drift states.~a! v f5v152p/5.27, corresponding
to point i in Fig. 5; ~b! v f52v22v152p/3.407, corresponding to
point k in Fig. 5; ~c! v f5v1/452p/20.84, which is outside the
parameter range in Fig. 5. The amplitude of the forcing is the same,
A50.1, in all cases. The drift speed is given by the size of the peak
in the Fourier spectrum atv1.

FIG. 10. Pathp, phase portrait, and Fourier spectrum of a cha-
otic state. The broadband Fourier spectrum results in an irregular tip
path. Parameters correspond to pointh in Fig. 5.
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f) from the remainder of the nonlinear system~the reduced
system!. In making this separation we obtain a very simple
and broadly applicable treatment of the forcing problem
which can be summarized in two parts.

(a) Reduced system. We first consider the dynamics of the
problem in the reduced system. For the particular model
equations studied, this means considering a forced two-
variable dynamical system. The dynamics of such a system
are quite well understood. In the absence of forcing, only
two types of states are possible: steady states and limit cycles
~corresponding to rigidly rotating and meandering spirals,
respectively!. In the first case, with forcing, the dynamics of
the reduced system are then those of a driven damped oscil-
lator ~the steady state is a stable focus!; in the later case with
forcing one obtains a classical frequency-locking picture as a
function of forcing amplitude and forcing period. We empha-
size that the frequency entrainments are associated with the
reduced system and are completely decoupled from the sym-
metry variables. The Fourier spectra of the variables in the
reduced system then play a key role in determining the dy-
namics of the full system.

(b) Full system.The dynamics of the full system, in par-
ticular the behavior of the pathp(t)5x(t)1 iy(t), can be
found from the dynamics of the reduced system by simple
quadrature. One can formally integrate the equation for the
phase angleḟ5v and from this obtain an expression for
ṗ(t) in the form of a Fourier series. The Fourier spectrum
contains peaks at frequenciesv11v j , wherev j represents
any of the frequencies found in the spectra of variables in the
reduced system. This may be a discrete or continuous set
depending on the dynamics of the reduced system. The fre-
quencyv1 is the mean value ofv(t) from the reduced sys-
tem and it enters the dynamics of the full system through the
integration of the equation for the phase angle. The full sys-
tem exhibits resonant drift if there is a frequencyv j in the
reduced system such thatv11v j50. The coefficient of the
corresponding term in the Fourier spectrum ofṗ gives the
speed of this drift. There is then a translating frame of refer-
ence in which the dynamics of the full system is of the same
type as in the reduced system. There is no resonant drift if
v11v jÞ0 for all frequenciesv j . In this case there is a
rotating frame~with frequencyv1) within which the dynam-
ics is like that of the reduced system.

We stress that the above approach is general and does not
depend on the particular form of dynamics in the reduced
system. The ODE system that we have examined is just a
low-order expansion for the dynamics of meandering spirals
and thus is the most basic system describing forced mean-
dering waves. Our approach and intuition are nevertheless
fully applicable to higher-dimensional dynamics in the re-
duced system. Whatever model one takes for spiral dynamics
on the infinite plane, it will necessarily be invariant under
some representation of Euclidean symmetry and one can ob-
tain a reduced system by considering the full system modulo
these symmetries. The condition for resonance drift then fol-
lows in exactly the way we have considered here.

B. Comparison with other work

Davydovet al. @2# provided an initial mathematical treat-
ment of resonant drift for rigidly rotating spiral waves under

homogeneous periodic forcing. Their approach was based on
a kinematic model of spiral dynamics in which one disre-
gards the thickness of the excited area and models the spiral
as a one-dimensional curve. This approach is nicely re-
viewed in @33#. From their approach, Davydovet al. ob-
tained the important features of rigidly rotating spiral waves
under periodic forcing. Specifically they discovered resonant
drift and found the applicable scaling laws: at a 1:k reso-
nance the drift speed scales asAuku for forcing amplitudeA
and near resonance the radius of the secondary motion is
proportional to the reciprocal of the frequency difference.
Moreover, in their approach the drift speed is related to prop-
erties of the medium and so one has the ability, in some
cases, to obtain not only the qualitative form of the scaling
laws but also quantitative information about the drift speed.

Our work not only confirms the scaling laws but also
shows clearly that these scaling laws depend only on the
symmetries of the system~something that has also been
noted in@5#!. The scaling follows from the periodic forcing
of a rotating wave in the plane at a resonant frequency. In no
way does it matter that the system considered is an excitable
medium or that the rotating wave is a spiral wave. In this
sense our results are much more general that those of Davy-
dov et al. because their approach is based on the case of a
weakly excitable media. Our approach applies to any physi-
cal system. Resonant drift for rigidly rotating spirals has
been confirmed in numerous experiments and numerical
simulations@7–10,25#.

There have been several recent studies of periodic forcing
of meandering spiral waves using the light-sensitive
Belousov-Zhabotinsky reaction~Schraderet al. @7,8#; Zykov
et al. @9,10#!. Resonant-drift-like behavior has been observed
both in experiments and simulations at specific forcing fre-
quencies. Zykovet al. @9# have found quasiperiodic drift for
forcing withTf5T1, i.e., forcing at the primary spiral period.
As we have seen, this is expected to lead to the fastest spiral
drift. They have also found a drift with low-frequency forc-
ing, which they refer to as ‘‘secondary’’ resonant drift. In
fact, it would appear that what they observe is simply a high-
order~4:1! resonance betweenTf andT1. We note that reso-
nant drifts occur forTf5kT1 for anyk and so this secondary
resonant drift is just one of many possible cases.

Schraderet al. have also observed resonance drift of me-
andering waves in an Oregonator model. In particular, they
have found a frequency-locked resonant drift forTf5T1 ~the
entrainment is apparently within theTf :T254:3 entrain-
ment tongue! @34#.

We believe that our analysis makes clear which frequency
interactions give rise to drift in the meandering case, and we
are able to predict where in parameter space drifts will occur.
As far as we are aware, no one has found or sought any of
the more complex resonances such as those we show in Fig.
9~b!. It should be possible to find such a resonance either in
experiment or in numerical simulations of a reaction-
diffusion model.

Frequency locking in the case of forced meandering
waves was initially described by Zykovet al. @10# and then
by Schraderet al. @7#. The experimental parameters for the
Zykov work were such as to give a five-petal meander flower
for the unforced system and this motivated our choice of
ODE parameters for this work. With forcing they find evi-
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dence of 1:2, 1:1, and 2:1 entrainments. Schraderet al.show
evidence of 1:1, 3:2, and 2:1 entrainments. Zykovet al.also
show an Arnol’d tongue diagram from numerical studies of
an Oregonator model. This diagram is quite similar to that
shown in Fig. 5 from the ODE model.

An interesting point is that in the numerical study of
Zykov et al. @9#, the primary frequency is affected only
slightly by the forcing amplitude. This is evidenced by the
fact that the frequency of primary resonance is essentially
independent of forcing amplitude. On the contrary, in the
ODE system the primary frequency varies considerably with
forcing amplitude and forcing frequency. Schraderet al. @7#
also find that the primary frequency can change considerably
with forcing period.

C. Future work

We conclude by noting some areas for future work. As
stated in the Introduction, a large part of the motivation for
this work has been the belief that it might some day be pos-
sible to use resonant drift as a means of low-voltage cardiac
defibrillation. If this is so, then a clear theoretical under-
standing of periodic forcing is necessary for spiral waves to
be predictable in the presence of inhomogeneities, anisotro-
pies, and lateral boundaries. Biktashev and Holden@5# have
made progress in understanding the interactions of drifting
spirals with boundaries, but further work is necessary to un-
derstand fully the dynamics of forced spiral waves in a sys-
tem with the spatial structure of heart tissue. Most impor-
tantly, one needs to understand the periodic forcing of waves
in three space dimensions@26,35#. The waves of electrical
activity in the heart are truly three dimensional and one must
properly address periodic forcing in this case if one is to
have useful theoretical understanding of cardiac defibrilla-

tion. We believe that the dynamical-systems based approach
that we have adopted can be extended to these more compli-
cated situations.

Several researchers have looked into feedback mecha-
nisms to control spiral waves. Biktashev and Holden@6#, for
example, use feedback to overcome the effect of medium
boundaries in resonant drift. Grillet al. @36# have applied
feedback controlled forcing to obtain stable meandering pat-
terns. It should be a relatively simple matter to incorporate
feedback into our ODE approach.

The other area in which it would be important to extend
our results is in the direction of bifurcation theory. There are
many aspects of this work that are interesting mathematically
but we have not addressed with mathematical rigor. It would
be interesting, for example, to consider the interaction of
periodic forcing with the Hopf bifurcation from rotating to
modulated rotating waves. Periodic forcing at a Hopf bifur-
cation point is an interesting mathematical situation@28,29#,
and the additional interplay with the symmetries of spiral
waves is worth exploring. Also worth consideration is the
case where the reduced dynamics are more complicated than
periodic, for it is known that spiral waves in excitable media
exhibit quite complex dynamics in the reduced system
@17,32#. Finally, there has been recent work using ‘‘spiral
boundary conditions’’ to generate rotating waves in simple
one-component chemical reactions@37#. It would be quite
interesting to apply periodic forcing to such a system.
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